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SUMMARY

The frequency or dispersion relation for the least-squares mixed formulation of the shallow-water
equations is analysed. We consider the use of di�erent approximation spaces corresponding to co-
located and staggered meshes, respectively. The study includes the e�ect of Coriolis, and the dispersion
properties are compared analytically and graphically with those of the mixed Galerkin formulation.
Numerical solutions of a test problem to simulate slow Rossby modes illustrate the theoretical results.
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1. INTRODUCTION

The �nite-element method is widely applied to shallow-water simulation for environmen-
tal applications as well as other �ow problems where the shallow-water long wavelength
assumption applies [1–5]. The most popular schemes are based on the scalar second-order
wave equation formulation with numerical or arti�cial dissipation [6]. There have also been
studies and applications using the mixed Galerkin formulation applied directly to the corre-
sponding �rst-order system. One of the key issues that arises, especially when dealing with
the mixed method, is the possible presence of spurious modes associated with folding of
the dispersion relation. This question is also intimately tied to the question of consistency
of the approximation spaces and the use of either co-located or staggered meshes in de�ning
these spaces for the respective velocity and elevation variables. The dispersion relation for the
mixed Galerkin method was �rst studied by Walters and Carey [7] who examined the folding
of the relation and the behaviour of spurious modes for certain choices of basis on co-located
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meshes i.e. on meshes that are not ‘staggered’. Subsequently, there have been several studies
of the behaviour of mixed Galerkin methods in both one and two dimensions [3, 8–11].
While most �nite-element methods (mixed or otherwise) are based on some variant of

the Galerkin method, other weighted residual type �nite-element formulations such as �nite-
element residual collocation and least-squares residual �nite-element schemes are of interest
[12]. The least-squares approach involves functional minimization and leads to symmetric
positive algebraic systems. Moreover, this formulation is not subject to the usual consistency
condition that is required of the mixed Galerkin saddle point problem (the LBB or inf sup
condition) [13–16]. Finally, the least-squares �nite-element scheme is equivalent to a Petrov–
Galerkin scheme involving the adjoint operator and is ‘naturally’ dissipative with dissipation
proportional to time step �t in the time-discretized implicit formulation [17]. Hence, it is
logical to explore the dispersion relation and properties of the least-squares mixed shallow-
water problem and that is the main objective of the present study.
The paper is organized as follows. The model equations and the time-discretization scheme

are presented in Sections 2 and 3, respectively. The least-squares mixed formulation follows
in Section 4. The �nite-element spaces for co-located and staggered grids are introduced and
representative nodal equations for the least-squares mixed system with piecewise linear ele-
ments are presented. A dispersion analysis with graphical representation of the damping e�ect
of the least-squares scheme and comparison to the corresponding Galerkin treatment is in-
cluded both in the absence and presence of Coriolis. In the latter case, we are particularly
interested in the dissipative e�ects for Rossby waves in ocean and atmosphere modelling appli-
cations and the stability (and damping) of gravity waves. In Section 5, this stability/dispersion
analysis is followed by numerical tests to simulate slowly propagating Rossby modes. Some
concluding remarks complete the study.

2. GOVERNING EQUATIONS

For an enclosed domain of length L, where 0¡x¡L, the one dimensional, inviscid, linearized
form of the shallow-water equations may be expressed in Cartesian coordinates [18] as

ut − f v+ g �x =0 (1)

vt + f u=0 (2)

�t +H ux =0 (3)

where u; v are the velocity components, � is the surface elevation with respect to the reference
level z=0; g is the gravitational acceleration and the Coriolis parameter f and the mean depth
H are assumed constant. Boundary and initial data complete the speci�cation of the problem.
Equations (1)–(3) are rewritten in a non-dimensional form in terms of the variables

x′= x=L; t′= t=T; u′= u=U; v′= v=U; �′= �=H (4)

with L= aE−1=4; T =E1=4=(2�) and U =
√
gH , where E=4�2a2=(gH) is the Lamb number,

a is the radius of the earth, and � is the angular frequency of the earth’s rotation.
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Substituting the dimensionless variables from (4) into (1)–(3), and omitting the primes,
we obtain

ut − f0v+ �x =0 (5)

vt + f0u=0 (6)

�t + ux =0 (7)

where f0 =fT is a non-dimensional parameter.

3. TEMPORAL DISCRETIZATION

For a given time step �t= tn+1 − tn we introduce a general two-level time discretization of
(5)–(7) of the form

un+1 − (1− �)f0�tvn+1 + (1− �)�t�n+1
x = un + �f0�tvn − ��t�n

x (8)

vn+1 + (1− �)f0�tun+1 = vn − �f0�tun (9)

�n+1 + (1− �)�tun+1
x = �n − ��tun

x (10)

where � and � are real parameters, such that 06�61 and 06�61. Observe that the standard
choices �= �=1; 1=2; 0 yield the respective forward Euler, trapezoidal Crank–Nicolson and
backward Euler type schemes.
Equations (8)–(10) are now spatially discretized using the least-squares method.

4. LEAST-SQUARES FORMULATION

The weighted least-squares residual variational functional for (8)–(10) is simply

I(u; v; �) =
∫ 1

0
{�1[un+1 − un − (1− �)f0�tvn+1 − �f0�tvn

+(1− �)�t�n+1
x + ��t�n

x]
2

+ �2[vn+1 − vn + (1− �)f0�tun+1 + �f0�tun]2

+ �3[�n+1 − �n + (1− �)�tun+1
x + ��tun

x]
2} dx (11)

where �1; �2; �3 are scaling weights for the respective residuals in a multi-objective optimiza-
tion sense. In the present work we take �1 = �2 = �3. The problem is to minimize the least-
squares functional over admissible variations of un+1; vn+1; �n+1. Setting �I =0 we obtain: �nd
un+1; vn+1; �n+1 satisfying the essential boundary conditions and such that the following holds
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for each time step �t:

∫ 1

0
(aun+1’+ (1− �)2�t2un+1

x ’x) dx

=
∫ 1

0
(bun’− �(1− �)�t2un

x’x + f0�tvn’−�t�n
x’) dx (12)

∫ 1

0
(avn+1’− (1− �)(1− �)f0�t2�n+1

x ’) dx

=
∫ 1

0
(bvn’− f0�tun’+ �(1− �)f0�t2�n

x’) dx (13)

∫ 1

0
(�n+1 + (1− �)2�t2�n+1

x  x − (1− �)(1− �)f0�t2vn+1 x) dx

=
∫ 1

0
(�n − �(1− �)�t2�n

x x + �(1− �)f0�t2vn x +�tun x) dx (14)

where a=1 + (1 − �)2f20�t2 and b=1 − �(1 − �)f20�t2, and ’ and  are the velocity and
surface elevation test functions, respectively.
Consider a uniform mesh of m intervals on (0; 1) and let h=1=m denote the meshlength

parameter. Introducing the �nite-element basis leads to a �nite-element statement as in (12)–
(14) but with un+1; vn+1; �n+1 replaced by the �nite-element trial functions un+1

h ; vn+1h ; �n+1
h and

’;  replaced by the corresponding �nite-element test functions ’h;  h for the selected meshes
and bases.
In particular, we shall consider the case where un+1

h ; vn+1h ; �n+1
h belong to the space of contin-

uous piecewise-linear polynomials, with d= h=1=m the nodal spacing. Since the least-squares
formulation involves a minimization it leads to symmetric positive algebraic systems and the
scheme is not subject to the usual consistency requirements associated with mixed Galerkin
methods. Hence, in the present study we may employ the same piecewise-linear basis {’j}
for all �eld variables uh; vh; �h but will also consider both co-located and staggered meshes
(o�-set by d=2) for velocity and elevation, respectively. Other possible choices of bases may
be considered but those investigated here are of most practical interest.

4.1. Pure gravity modes (f0 = 0)

4.1.1. Co-located meshes. Both �eld variables (uh; �h) have piecewise-linear Lagrange bases
with nodes co-located at the same positions xj (j=0; 1; : : : ; m) on (0; 1). Equations (12) and
(14) then lead to

h
6
(un+1

j−1 + 4u
n+1
j + un+1

j+1 ) + (1− �)2
�t2

h
(−un+1

j−1 + 2u
n+1
j − un+1

j+1 )
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=
h
6
(un

j−1 + 4u
n
j + un

j+1)− �(1− �)
�t2

h
(−un

j−1 + 2u
n
j − un

j+1)

+
�t
2
(�n

j−1 − �n
j+1) for j=1; 2; : : : ; m− 1 (15)

h
6
(�n+1

j−1 + 4�
n+1
j + �n+1

j+1) + (1− �)2
�t2

h
(−�n+1

j−1 + 2�
n+1
j − �n+1

j+1)

=
h
6
(�n

j−1 + 4�
n
j + �n

j+1)− �(1− �)
�t2

h
(−�n

j−1 + 2�
n
j − �n

j+1)

+
�t
2
(un

j−1 − un
j+1) for j=1; 2; : : : ; m− 1 (16)

Periodic solutions of discrete system (15)–(16) corresponding to u= ũei(kx+!t) and
�=�̃ ei(kx+!t) are sought, where ũ and �̃ are amplitudes, k is the wave number in the x-
direction and ! is the angular frequency. Substituting in (15)–(16) and setting

p= 1
3(2 + cos kh); q= 1

2(1− cos kh); s1 = sin kh; E=ei!�t (17)

to simplify the resulting relations, we get

{p(E − 1) + 4c2q(1− �)(E[1− �] + �)}ũ+ ics1�̃=0 (18)

ics1ũ+ {p(E − 1) + 4c2q(1− �)(E[1− �] + �)}�̃=0 (19)

where c≡�t=h is the gravitational Courant number.
For a non-trivial solution (ũ; �̃) to exist, the determinant of the coe�cients in (18)–(19)

must vanish. This leads to

E=
p− 4c2q�(1− �)± ics1

p+ 4c2q(1− �)2
(20)

or equivalently,

E= |E|ei� (21)

where � represents the change in argument (or phase change) of the numerical solution in
each time step and

|E|=
√
(p− 4c2q�[1− �])2 + c2s21

p+ 4c2q(1− �)2
(22)

A necessary and su�cient condition for stability is that |E|61.
For �=1 (forward Euler scheme) the least-squares �nite-element scheme reverts to the

Galerkin �nite-element scheme. Consequently, for kh �=0 (�) Equation (22) gives |E|¿1 and
the gravity modes are unstable.
For �=0 and �= 1

2 ; |E| is graphed in Figure 1 and the behaviour is summarized in table
form, including the maximum and minimum values of |E|. The results obtained with the
least-squares scheme (LS) are compared with those obtained with the corresponding mixed

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:607–622



612 D. Y. LE ROUX AND G. F. CAREY

Figure 1. |E| on co-located meshes for pure gravity modes.

Galerkin scheme (G). For both schemes the mode associated with kh=0 (2�) and leading to
!=0 and |E|=1, corresponds to the hydrostatic mode or steady solution.
For �=0, of special interest is the observation that in the Galerkin case waves of length

2d, corresponding to kh=� (2�), lead to !=0 (and |E|=1) and the waves do not propagate.
This mode is identi�ed as a spurious mode and it corresponds to a physical eigenmode of the
system which has its phase speed reduced to zero by the numerical method [7]. The least-
squares scheme does not su�er from the presence of spurious modes and |E|=1 only for the
hydrostatic mode; in particular, waves of length 2d normally propagate. However, the least-
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Table I. Cosine and sine of the phase change � on co-located meshes.

cos � sin �

�=0 LS and G
p√

p2 + c2s21

cs1√
p2 + c2s21

�= 1
2 LS

p− c2q√
(p− c2q)2 + c2s21

cs1√
(p− c2q)2 + c2s21

G
4p2 − c2s21
4p2 + c2s21

4cps1
4p2 + c2s21

squares scheme excessively damps the gravity modes as shown in Figure 1, and the damping
is even more dramatic than in the Galerkin case. For example, we obtain |E|LSmin � 0:13 and
|E|Gmin � 0:61 for c=0:75.
For �=1=2 the Galerkin scheme is neutrally stable for the gravity modes whereas the

least-squares scheme leads to |E|LSmin = 0 for kh=� (2�) (waves of length 2d) and c=1=
√
3

as shown in Figure 1. In the latter case, the damping of the gravity modes is signi�cant for
0:456c60:75 since |E|LSmin¡0:25.
The analytical expressions for cos � and sin � are given in Table I and the corresponding

diagrams are shown in Figure 2. As expected, both the least squares and the Galerkin solutions
coincide for �=0; in particular for kh=� (2�) we have cos �=1, so �=0 (2�) and there
is no phase change of the numerical solutions. In the case �=1=2, both schemes mainly
di�er with respect to the waves of length 2d corresponding to kh=� (2�) mentioned above.
Indeed, in the Galerkin case �=0 (2�) again as for �=0, whereas with the least-squares
scheme �=0 (2�) for c¡1=

√
3 but �=� (2�) for c¿1=

√
3 implying a phase change of the

numerical solution.

4.1.2. Staggered meshes. In this discretization, the �eld variables uh are again located at the
previous nodal positions xj (j=0; 1; : : : ; m) on (0; 1) but the nodal �eld variables for �h are
now located at the cell midpoints; that is, at xj+1=2 (j=0; 1; : : : ; m − 1) midway between the
velocity nodes. Equations (12) and (14) then lead to

h
6
(un+1

j−1 + 4u
n+1
j + un+1

j+1 ) + (1− �)2
�t2

h
(−un+1

j−1 + 2u
n+1
j − un+1

j+1 )

=
h
6
(un

j−1 + 4u
n
j + un

j+1)− �(1− �)
�t2

h
(−un

j−1 + 2u
n
j − un

j+1)

+
�t
8
(�n

j−3=2 + 5�
n
j−1=2 − 5�n

j+1=2 − �n
j+3=2) for j=2; 3; : : : ; m− 2 (23)

h
6
(�n+1

j−1=2 + 4�
n+1
j+1=2 + �n+1

j+3=2) + (1− �)2
�t2

h
(−�n+1

j−1=2 + 2�
n+1
j+1=2 − �n+1

j+3=2)

=
h
6
(�n

j−1=2 + 4�
n
j+1=2 + �n

j+3=2)− �(1− �)
�t2

h
(−�n

j−1=2 + 2�
n
j+1=2 − �n

j+3=2)

+
�t
8
(un

j−1 + 5u
n
j − 5un

j+1 − un
j+2) for j=1; 2; : : : ; m− 2 (24)
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Figure 2. Cosine and sine of the phase change � on co-located meshes.

Substituting as before for u, � and simplifying with

s2 =
1
4

(
sin
3kh
2
+ 5 sin

kh
2

)
(25)

Equations (23)–(24) imply

{p(E − 1) + 4c2q(1− �)(E[1− �] + �)}ũ+ ics2�̃=0 (26)

ics2ũ+ {p(E − 1) + 4c2q(1− �)(E[1− �] + �)}�̃=0 (27)
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For a non-trivial solution (ũ; �̃) to exist, the determinant of the coe�cients in (26)–(27) must
vanish. This leads to

E=
p− 4c2q�(1− �)± ics2

p+ 4c2q(1− �)2
(28)

and

|E|=
√
(p− 4c2q�[1− �])2 + c2s22

p+ 4c2q(1− �)2
(29)

For �=1 (forward Euler scheme) the least-squares �nite-element scheme reverts again to the
Galerkin �nite-element scheme. Consequently, for kh �=0 (�), Equation (29) gives |E|¿1 and
the gravity modes are again unstable.
For �=0 and �=1=2, |E| is graphed in Figure 3 and the behaviour is summarized in

table form in the same manner as for the co-located meshes considered earlier. Both the least
squares and the Galerkin schemes now exhibit solutions without spurious modes. However,
for �=0 the damping of the gravity modes is signi�cant, and slightly more pronounced in
the least-squares case. For example, we obtain |E|LSmin � 0:32 and |E|Gmin � 0:41 for c=0:75.
For �=1=2 the Galerkin scheme is neutrally stable for the gravity modes whereas the least-
squares scheme still damps those modes but much less dramatically than in the case �=0.
|E|LSmin is reached for kh=� (2�) (waves of length 2d) and c=1=

√
3 with |E|LSmin =

√
3=2.

The analytical expressions corresponding to cos � and sin � are obtained from Table I by
replacing s1 by s2. The corresponding diagrams are not shown. As for the co-located case the
Galerkin and least-squares schemes give identical results for �=0, and insigni�cant di�erences
are observed between both schemes for �=1=2.

4.2. Inertia-gravity and Rossby modes (f0 �=0)
Because of the previous results showing excessive damping of the gravity modes on

co-located meshes, the inertia-gravity and Rossby modes are only considered here in the
case of a staggered mesh for �=1=2. Applying now the discretization described in Section
4.1.2 for the �eld variables uh; vh and �h, Equations (12)–(14) lead to

a
h
3
(un+1

j−1 + 4u
n+1
j + un+1

j+1 ) +
�t2

2h
(−un+1

j−1 + 2u
n+1
j − un+1

j+1 )

= b
h
3
(un

j−1 + 4u
n
j + un

j+1)−
�t2

2h
(−un

j−1 + 2u
n
j − un

j+1)

+f0�t
h
3
(vnj−1 + 4v

n
j + vnj+1) +

�t
4
(�n

j−3=2 + 5�
n
j−1=2 − 5�n

j+1=2 − �n
j+3=2) (30)

a
h
3
(vn+1j−1 + 4v

n+1
j + vn+1j+1) + (1− �)f0

�t2

8
(�n+1

j−3=2 + 5�
n+1
j−1=2 − 5�n+1

j+1=2 − �n+1
j+3=2)

= b
h
3
(vnj−1 + 4v

n
j + vnj+1)− f0�t

h
3
(un

j−1 + 4u
n
j + un

j+1)

− (1− �)f0
�t2

8
(�n

j−3=2 + 5�
n
j−1=2 − 5�n

j+1=2 − �n
j+3=2) for j=2; 3; : : : ; m− 2 (31)
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Figure 3. |E| on staggered meshes for pure gravity modes.

h
3
(�n+1

j−1=2 + 4�
n+1
j+1=2 + �n+1

j+3=2) +
�t2

2h
(−�n+1

j−1=2 + 2�
n+1
j+1=2 − �n+1

j+3=2)

−(1− �)f0
�t2

8
(vn+1j−1 + 5v

n+1
j − 5vn+1j+1 − vn+1j+2)

=
h
3
(�n

j−1=2 + 4�
n
j+1=2 + �n

j+3=2)−
�t2

2h
(−�n

j−1=2 + 2�
n
j+1=2 − �n

j+3=2)
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+ �f0
�t2

8
(vnj−1 + 5v

n
j − 5vnj+1 − vnj+2)

+
�t
4
(un

j−1 + 5u
n
j − 5un

j+1 − un
j+2) for j=1; 2; : : : ; m− 2 (32)

Periodic solutions of (30)–(32) are again sought with v= ṽei(kx+!t), and we obtain

(p[aE − b] + c2q[E + 1])ũ− f0�tpṽ+ ics2�̃=0 (33)

f0�tpũ+ (p[aE − b] + c2q[E + 1])ṽ− ics2 f0�t
2

(1− �)(E + 1)�̃=0 (34)

ics2ũ+ ics2
f0�t
2

(E[1− �] + �)ṽ+ (p[E − 1] + c2q[E + 1])�̃=0 (35)

For a non-trivial solution (ũ; ṽ; �̃) to exist, the determinant of the coe�cients in (33)–(35)
must vanish. Simplifying with

r=
1
4
(3 + cos kh)2; s22 = qr (36)

leads to

{p(aE − b) + qc2(E + 1)} ×
{
p2(aE − b)(E − 1) + pqc2(aE − b)(E + 1)

− qrc2
(f0�t)2

4
(1− �)(E + 1)(E[1− �] + �)

}

−p(f0�t)2{−p2(E − 1)− pqc2(E + 1) +
qr
2

c2(E[1− �] + �)}

+pqrc2
{
(aE − b)− (f0�t)2

2
(1− �)(E + 1)

}
=0 (37)

We let

A= (ap+ qc2)
{
ap2 +

(
ap− [f0�t]2

4
[1− �]2r

)
qc2

}

B=−a(a+ 2b)p3 + {(a2 − 2ab− b)p+ (2a− b)qc2}pqc2

− (f0�t)2

4
(1− �){(a+ b[�− 1])p+ (2− �)qc2}qrc2

C = (b2 + 2ab+ [f0�t]2)p3 − (f0�t)2

4
(1− �){(a�− b+ 4)p+ (1 + �)qc2}qrc2

+ {(b2 − 2ab− a+ [f0�t]2)p+ (a− 2b)qc2 + ar}pqc2
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D=−(b2 + [f0�t]2)p3 +
(f0�t)2

4
�(1− �)(bp− qc2)qrc2

+
{
(b2 + b+ [f0�t]2)p− bqc2 −

(
b+

[f0�t]2

4

)
r
}
pqc2

and (37) reduces to

AE3 + BE2 + CE +D=0 (38)

Two roots in (38) are complex conjugate and correspond to the inertia-gravity modes. For
these modes, |E| is graphed in Figure 4 in the case �=1=2 for �=0 and 1=2, respectively,
and the least squares and the Galerkin solutions are compared for two values of f0�t (0.1
and 0.5). For �=0 and 1=2 the least-squares solutions are comparable to those obtained in
Figure 3 for gravity modes with no rotation (f0 = 0). However, for �=0 as the time step
progressively increases, the least-squares solution tends to draw nearer to the Galerkin case.
For �=1=2 the Galerkin scheme is neutrally stable for the inertia-gravity modes, whereas in
the case �=0 these modes are damped and the damping increases with increasing values of
f0�t. For �=1 we obtain |E|LSmax = |E|Gmax =

√
1 + (f0�t)2¿1 for kh=0 (2�), and hence the

inertia-gravity modes (not shown) are unstable.
The third root in (38) is real and corresponds to the slow mode, the Rossby mode. |E| is

graphed for this mode in Figure 5 in the case �=1=2 with �=0 and 1=2, and both the least
squares and the Galerkin solutions are again compared with for the values f0�t=0:1 and
0.5. For �=0 and 1=2 the Galerkin scheme is neutrally stable for the Rossby modes whereas
some damping occurs in the least-squares case, and this damping is enhanced with increasing
values of f0�t.
The diagrams representing cos � and sin � (not shown) exhibit insigni�cant di�erences when

the least squares and the Galerkin solutions are compared for both the inertia-gravity and the
Rossby modes.
In the next section, some numerical tests are performed to evaluate the level of damping

observed in Figure 5 in the least-squares discretization of the Rossby modes (the modes of
interest), for �=1=2 and �=1=2.

5. NUMERICAL RESULTS

The slowly propagating Rossby modes are simulated as the one-dimensional part of an ideal
eddy at midlatitudes. The least-squares �nite-element discretized equations (30)–(32) (for
�=1=2) are solved as a reduced-gravity model with parameters set to correspond to the �rst
internal vertical mode of a baroclinic model. A second passive layer is implicitly assumed
that is in�nitely deep and at rest. This formulation precludes any in�uence of the bathymetry.
The choice H =1:63 m results in a phase speed for gravity waves of

√
gH ≈ 4 m s−1. Such

a small equivalent depth is unusual for atmospheric studies, but it is pertinent in the oceanic
context for the adjustment under gravity of a density-strati�ed �uid (e.g. see Reference [19]).
A Gaussian distribution is prescribed at initial time and the initial velocity �eld is taken

to be in geostrophic equilibrium, a balance between the Coriolis and the pressure gradient
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Figure 4. |E| on staggered meshes in the case �=1=2, for inertia-gravity modes.

terms, i.e.

�(x; 0) = �e−�x2 (39)

u(x; 0) = 0 (40)

v(x; 0) =
1
f0

�x(x; 0) (41)

The distance between two velocity nodes is taken to be 30 km and the domain is chosen
su�ciently long to prevent the Gaussian from approaching the boundaries in the time interval
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Figure 5. |E| on staggered meshes in the case �=1=2, for Rossby modes.

for the simulation carried out. The Coriolis parameter is evaluated at 25◦N and the radius of
deformation is thus Rd ≡

√
gH=f≈ 65 km. The parameters � and � are chosen such that the

e-folding radius of the initial Gaussian is resolved by four velocity nodes and the initial max-
imum velocity is 1m s−1. A simple scaling can provide more realistic atmospheric parameters
without substantially modifying the results.
The evolution of the maximum values of the computed surface-elevation �eld is shown in

Table II at di�erent stages of propagation (10, 20 and 30 days) and for di�erent time steps
(15, 30 and 60min). In all cases the maximum value of the surface-elevation �eld is scaled to
1 at the beginning of the experiment. Table II shows that the Rossby modes are damped, as
anticipated, by the dispersion relation analysis, and the damping is found to be proportional
both to the length of the time step and the duration of the simulation. For a two-dimensional
experiment the damping is expected to be even more important.
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Table II. Maximum values of the computed surface-elevation �eld at di�erent stages
of the propagation (10, 20 and 30 days) for di�erent time steps (15, 30 and 60 min)
in simulating the slowly propagating Rossby modes for �=1=2 and �=1=2 with the

least-squares method on staggered meshes.

10 days 20 days 30 days

15 min 0.993 0.986 0.980
30 min 0.986 0.973 0.961
60 min 0.973 0.950 0.929

It has also been computationally veri�ed that the maximum value of the computed surface-
elevation �eld remained unchanged in the Galerkin case, whatever the length of the time step
and the duration of the experiment.

6. CONCLUDING REMARKS

This appears to be the �rst study of the dispersion relation and mode behaviour for �nite-
element solutions of the shallow-water equations based on the least-squares mixed approach.
The graphical display of the dispersion relation implies that the least-squares scheme can
again be applied without the usual restrictions on the bases associated with mixed Galerkin
schemes. Moreover, the method does not exhibit folding of the dispersion relation. However,
the analysis also shows that both the inertia-gravity and Rossby modes are over-damped. The
latter behaviour might have been anticipated based on the dissipative nature of the least-squares
scheme observed in previous studies.
The damping of the Rossby mode might be an issue. Indeed, a high-order spatial accuracy

is usually desirable for the treatment of the slow Rossby modes, and has proven practical
and bene�cial for atmospheric and oceanic prediction models. The damping observed for the
Rossby modes in the present simulations, which is expected to be even more important for
two-dimensional experiments, suggests the least-squares approach should be used with care
(if at all) and restricted to short time steps and short simulations.
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